16 Март 2011

КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ «ОСНОВЫ ЭКОЛОГИИ»




Разумный баланс между затратами и выгодами складывается в городе умеренных размеров с населением около 100-200 тыс. человек. Конечно, при определении теоретически оптимальных размеров города надо учитывать много сложных факторов. Кроме того, каждый крупный регион мира должен иметь по крайней мере один очень крупный город, дающий те культурные и образовательные преимущества, которым могут обладать только очень большие города, например, музеи, филармонии, вузы, высококлассные спортивные команды. Гражданам придётся смириться с тем, что крупный центральный город не может сам себя обеспечить и нуждается в дотациях от населения данного региона и всей страны — это будет плата за экономические и культурные блага, предоставляемые им всему региону.
В городах экономические функции максимизированы до такой степени, что не удаётся одновременно максимизировать социальные и экологические аспекты человеческого существования.
2.3.3. Энергетическая классификация экосистем
Источник и качество доступной энергии в той или иной степени определяет видовой состав и численность организмов, характер функциональных процессов, протекающих в экосистеме, и процессов её развития, а также образ жизни человека. Поскольку энергия общий знаменатель и исходная движущая сила всех экосистем, как природных, так и антропогенных, логично принять энергию за основу для «первичной» классификации экосистем. Удобно выделить на этой основе четыре фундаментальных типа экосистемы.
1. Природные, движимые Солнцем, несубсидируемые. Источник энергии Солнце, ежегодный приток энергии 1000 10000 ккал/м?. К этому типу принадлежат открытые океаны, горные леса, степи, большие глубокие озёра; они занимают 70% площади Земли. Часто на них накладываются и другие ограничения, например, нехватка элементов питания и воды. Эти экосистемы имеют низкую продуктивность. Организмы, живущие в них, выработали хорошую адаптацию к существованию на скудном пайке энергии. В силу большого объёма этих экосистем они основа системы жизнеобеспечения Земли.
2. Природные, движимые Солнцем, субсидируемые другими естественными источниками. Ежегодный приток энергии 10000 40000 ккал/м?. Примеры: эстуарии в приливных морях, некоторые дождевые леса. Это природные системы, обладающие естественной плодородностью и характеризующиеся не только высокой поддерживающей способностью, но и производящие излишки органического вещества, которые могут выноситься в другие системы или накапливаться.
3. Движимые Солнцем и субсидируемые человеком. Ежегодный приток энер-гии 20000?40000 ккал/м?. Основной пример: агроэкосистема. Это системы, производящие продукты питания и волокнистые материалы, и получающие дотации в форме горючего или в др. формах, поставляемых человеком. Это экосистемы с не просто повышенной продуктивностью, а с продуктивностью, нацеленной на производство пищевых и волокнистых материалов, легко собираемых и перерабатываемых.
4. Индустриально-городские, движимые топливом. Главный источник энергии не Солнце, а топливо. Ежегодный приток энергии 100000 3000000 ккал/м?. Это системы, в которых генерируется наше богатство, но они зависят от экосистем первых трёх типов, паразитируя на них и получая от них продукты питания и топливо. Характеризуются сверхбольшими потоками энергии. В год на человека приходится около 80 млн. ккал при годовой потребности пищи в 1 млн. ккал, т.е. на промышленность, транспорт, сельское и домашнее хозяйство расходуется в 80 раз энергии больше, чем требуется для физиологических нужд.

2.4. КРУГОВОРОТ ВЕЩЕСТВ В БИОСФЕРЕ. БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ
2.4.1. Круговорот веществ в биосфере
В процессе фотосинтеза растениями постоянно поглощаются большие массы косного химического вещества. Поскольку запас косного химического вещества на Земле ограничен, чтобы процесс фотосинтеза не прекращался необходимо, чтобы это вещество проходило через фотосинтез по замкнутому циклу.
Образование живой материи и её разложение — это две стороны единого про-цесса, который называется биологическим круговоротом химических элементов. В процессе круговорота живая материя приобретает дополнительную энергию, в процессе её разложения энергия возвращается в окружающую среду. За счет биологической энергии происходят различные химические и биогеохимические реакции. Круговорот вещества характерен для экосистем любого уровня организации — от отдельного уровня организации биогеоценоза до биосферы в целом.
Химические элементы, в том числе все основные элементы протоплазмы, обычно циркулируют в биосфере по характерным путям из внешней среды в организмы и опять во внешнюю среду. Эти в большей или в меньшей степени замкнутые пути называются биогеохимическими циклами.